48 research outputs found

    Courcelle's Theorem - A Game-Theoretic Approach

    Get PDF
    Courcelle's Theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large - every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications. In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.Comment: submitte

    Approximation hardness of deadline-TSP reoptimization

    Get PDF
    AbstractGiven an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification-U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.e.,whether lm-U is computationally more tractable than U. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem

    The Parameterized Approximability of TSP with Deadlines

    Get PDF
    Modern algorithm theory includes numerous techniques to attack hard problems, such as approximation algorithms on the one hand and parameterized complexity on the other hand. However, it is still uncommon to use these two techniques simultaneously, which is unfortunate, as there are natural problems that cannot be solved using either technique alone, but rather well if we combine them. The problem to be studied here is not only natural, but also practical: Consider TSP, generalized as follows. We impose deadlines on some of the vertices, effectively constraining them to be visited prior to a given point of time. The resulting problem DlTSP (a special case of the well-known TSP with time windows) inherits its hardness from classical TSP, which is both well known from practice and renowned to be one of the hardest problems with respect to approximability: Within polynomial time, not even a polynomial approximation ratio (let alone a constant one) can be achieved (unless P = NP). We will show that DlTSP is even harder than classical TSP in the following sense. Classical TSP, despite its hardness, admits good approximation algorithms if restricted to metric (or near-metric) inputs. Not so DlTSP (and hence, neither TSP with time windows): We will prove that even for metric inputs, no constant approximation ratio can ever be achieved (unless P = NP). This is where parameterization becomes crucial: By combining methods from the field of approximation algorithms with ideas from the theory of parameterized complexity, we apply the concept of parameterized approximation. Thereby, we obtain a 2.5-approximation algorithm for DlTSP with a running time of k! · poly(|G|), where k denotes the number of deadlines. Furthermore, we prove that there is no fpt-algorithm with an approximation guarantee of 2-ε for any ε > 0, unless P = NP. Finally, we show that, unlike TSP, DlTSP becomes much harder when relaxing the triangle inequality. More precisely, for an arbitrary small violation of the triangle inequality, DlTSP does not admit an fpt-algorithm with approximation guarantee ((1-ε)/2)|V| for any ε > 0, unless P = N

    On the Approximability of TSP on Local Modifications of Optimally Solved Instances

    Get PDF
    Given an instance of TSP together with an optimal solution, we consider the scenario in which this instance is modified locally, where a local modification consists in the alteration of the weight of a single edge. More generally, for a problem U, let LM-U (local-modification-U) denote the same problem as U, but in LM-U, we are also given an optimal solution to an instance from which the input instance can be derived by a local modification. The question is how to exploit this additional knowledge, i.e., how to devise better algorithms for LM-U than for U. Note that this need not be possible in all cases: The general problem of LM-TSP is as hard as TSP itself, i.e., unless P=NP, there is no polynomial-time p(n)-approximation algorithm for LM-TSP for any polynomial p. Moreover, LM-TSP where inputs must satisfy the β-triangle inequality (LM-Δβ-TSP) remains NP-hard for all β>½. However, for LM-Δ-TSP (i.e., metric LM-TSP), we will present an efficient 1.4-approximation algorithm. In other words, the additional information enables us to do better than if we simply used Christofides' algorithm for the modified input. Similarly, for all 1<β<3.34899, we achieve a better approximation ratio for LM-Δ-TSP than for Δβ-TSP. For ½≤β<1, we show how to obtain an approximation ratio arbitrarily close to 1, for sufficiently large input graphs

    Reusing optimal TSP solutions for locally modified input instances : Extended abstract

    Get PDF
    Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification- U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e., whether lm-U is computationally more tractable than U. Here, we give non-trivial examples both of problems where this is and problems where this is not the case4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Программа мероприятий по оптимизации управления закупками в ООО «Борус»

    Get PDF
    Выпускная квалификационная работа состоит из введения, четырех глав, списка литературы, приложения. Во введении обоснована актуальность выбранной темы, поставлена цель и задачи исследования. В первой главе рассмотрены теоретические аспекты закупочной логистики, особенности закупочной логистики в розничной торговле. Во второй главе проведен анализ существующей логистической системы на предприятии, проведена оценка надежности поставщиков. В третьей главе предложены рекомендации по оптимизации закупочной деятельности и ожидаемый эффект. В четвертой главе рассмотрена корпоративно-социальная ответственность предприятия. В заключении приведены основные выводы, полученные в результате проведенного исследования.Final qualifying work consists of an introduction, four chapters, bibliography, Appendix. In the introduction, the relevance of the chosen topic is justified, the purpose and objectives of the study are set. The first Chapter discusses the theoretical aspects of procurement logistics, especially procurement logistics in retail trade. In the second Chapter, an analysis of the existing logistics system in the enterprise, an assessment of the reliability of suppliers. The third Chapter offers recommendations for the optimization of procurement activities and the expected effect. The fourth Chapter discusses the corporate and social responsibility of the enterprise. In conclusion, the main conclusions obtained as a result of the study are presented

    К вопросу о природе "кандолюминесценции" Al2O3

    Get PDF

    Reusing optimal TSP solutions for locally modified input instances : Extended abstract

    Get PDF
    Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification- U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e., whether lm-U is computationally more tractable than U. Here, we give non-trivial examples both of problems where this is and problems where this is not the case4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI
    corecore